4x^2=(2.9)(7.6-x)(-x)

Simple and best practice solution for 4x^2=(2.9)(7.6-x)(-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2=(2.9)(7.6-x)(-x) equation:



4x^2=(2.9)(7.6-x)(-x)
We move all terms to the left:
4x^2-((2.9)(7.6-x)(-x))=0
We add all the numbers together, and all the variables
4x^2-((2.9)(-1x+7.6)(-1x))=0
We multiply parentheses ..
4x^2-((-2.9x+22.04)(-1x))=0
We calculate terms in parentheses: -((-2.9x+22.04)(-1x)), so:
(-2.9x+22.04)(-1x)
We multiply parentheses ..
(+2x^2-22.04x)
We get rid of parentheses
2x^2-22.04x
Back to the equation:
-(2x^2-22.04x)
We get rid of parentheses
4x^2-2x^2+22.04x=0
We add all the numbers together, and all the variables
2x^2+22.04x=0
a = 2; b = 22.04; c = 0;
Δ = b2-4ac
Δ = 22.042-4·2·0
Δ = 485.7616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22.04)-\sqrt{485.7616}}{2*2}=\frac{-22.04-\sqrt{485.7616}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22.04)+\sqrt{485.7616}}{2*2}=\frac{-22.04+\sqrt{485.7616}}{4} $

See similar equations:

| 8/3=t+5/2 | | 14q−12q=6 | | 7b+16=37 | | 8(x-2)=5x-14 | | x=2*8+8+8*8 | | 3y=17y | | 287=15+8d/13 | | 2.79x+3.19x=14.56 | | 7(3-m)=-3m+4 | | 5x12=60/3+30-50 | | -2(x-7)+3(x+5)=x+9 | | x+x+1/4x+1/2x+99=100 | | 4+3r=-9 | | 1/3(6x+27)−15=3(4x−5) | | 9x+18=5x+10 | | 1=2880/d^2 | | x^2=2800 | | x−23=78 | | .3a−32=4 | | (5x-2)+5=0 | | P(-4)=-2x+3 | | x-(0,10x)=12 | | x-(0.10x)=12 | | 3x+5x+4–x+7=11 | | x+(x/100)*7=20 | | 35+3x(-)11=23 | | 50=5x+6-x | | 5=(10x^2) | | 3x+15=333x+15-15=333x=33=x=11 | | x-5/11=0 | | x=35x+25 | | 42-14g=-4g+12 |

Equations solver categories